

THIRD SPACE LEARNING

Specialist 1-to-1 maths interventions and curriculum resources

Rapid Reasoning

Year 6 | Week 2

As this is still towards the start of the introduction of Year 6 Rapid Reasoning, children should be continuing to increase in their reasoning confidence each day.

The Year 6 objectives introduced this week continue to focus on place value. As with all weeks of Rapid Reasoning, there continues to be content covered from across the maths curriculum.

Year 6 objectives introduced in a reasoning context for the first time this week include:

- using negative numbers in context, including calculating intervals across zero
- recognising the place value of each digit in a number up to 10,000,000.

The following Year 6 objectives continue to be a focus from week 1:

- reading, writing, ordering and comparing numbers up to 10,000,000
- rounding numbers to any degree of accuracy.

Q1 Look at this line graph. It shows the population of a town in Norfolk.

In which year did the population reach 450,000 for the first time?
\square
b By how much did the population increase in the 40 years before the year 2000?
\square

Q2 Round 94,516
to the nearest 10 :
to the nearest 100:
\square

to the nearest 1,000 : \square

2 marks
Q3 These two arrows are identical.

Complete the boxes to describe the translation of arrow A to arrow B.

The arrow has moved \square squares

Q1 Look at this line graph. It shows the population of a town in Norfolk.

In which year did the population reach 450,000 for the first time?

1985

b By how much did the population increase in the 40 years before the year 2000?

$$
150,000
$$

Q2 Round 94,516
to the nearest 10 :
to the nearest 100:
to the nearest 1,000 :

$$
94,520
$$

94,500

95,000

2 marks
Q3 These two arrows are identical.

Complete the boxes to describe the translation of arrow A to arrow B.

The arrow has moved 6 squares up and 6 squares to the left.

	Requirement	Mark	Additional guidance
Q1a	1984 OR 1985 OR 1986	1	
Q1b	Answer in the range 140,000-170,000 inclusive.	1	Answers must be a whole number.
Q2	Award TWO marks for all three boxes correctly completed, as below:	2	
To the nearest 10: 94,520 To the nearest 100: 94,500	Award ONE mark for two out of three boxes correctly completed.	1	BOTH must be correct for the award of ONE mark.
Q3	The arrow has moved six squares up and six squares to the left.		

Q1 Here is part of a number line.
Write the missing numbers in the boxes.

2 marks
Q2 Ali puts these five numbers on a number line.
567,843 453,999 1,033,321 940,999 587,743
a Which number would be closest to 500,000?
\square
b Which number would be closest to one million?
\square

Q1 Here is part of a number line.
Write the missing numbers in the boxes.

2 marks
Q2 Ali puts these five numbers on a number line.
567,843 453,999 1,033,321 940,999 587,743
a Which number would be closest to 500,000?

$$
453,999
$$

b Which number would be closest to one million?
1,033,321

Q3 Circle the fractions below that are not equivalent to $\frac{6}{7}$.
$\frac{18}{21} \quad \frac{22}{28} \quad \frac{60}{70} \quad \frac{42}{35} \quad \frac{7}{14} \quad \frac{72}{84}$

2 marks

	Requirement	Mark	Additional guidance
Q1	Award TWO marks for both numbers correctly placed: -14 and 8. Award ONE mark for one number correctly placed.	2	Numbers must be in the correct box to be creditworthy.
Q2a	453,999	1	Do not accept 8, -3 or -14.
Q2b	$1,033,321$	1	Do NOT award marks for two correctly circled if they are circled along with any incorrectly circled fraction.
Q3a	Award TWO marks for $\frac{22}{28}$ AND $\frac{42}{35}$ AND $\frac{7}{14}$ correctly circled. Award ONE mark for either: two correctly circled and none incorrectly circled OR three correctly circled and one incorrectly circled.		

Q1 This is a weather report from the radio:

a What will the temperature be in Glasgow today?

b What will the temperature be in London today?
\square

1 mark

Q2 Gracie and Evie each start with the same number.

Gracie rounds the number to the nearest hundred.

Evie rounds the number to the nearest ten. Gracie's answer is double Evie's answer.

Explain how this could be.

Q3 Class 6 gets through $\frac{3}{4}$ of a packet of glue sticks per table each year.

There are six tables in the class.
How many boxes of glue sticks does the class get through altogether?

Give your answer as a mixed number.

1 mark

Q1 This is a weather report from the radio:

a What will the temperature be in Glasgow today?

$$
-2^{\circ} \mathrm{C}
$$

b What will the temperature be in London today?
\square

Q2 Gracie and Evie each start with the same number.

Gracie rounds the number to the nearest hundred.

Evie rounds the number to the nearest ten. Gracie's answer is double Evie's answer.

Explain how this could be.

Q3 Class 6 gets through $\frac{3}{4}$ of a packet of glue sticks per table each year.

There are six tables in the class.
How many boxes of glue sticks does the class get through altogether?

Give your answer as a mixed number.

\(\left.\begin{array}{c|l|c|l} \& Requirement \& Mark \& Additional guidance

\hline Q1a \& -2^{\circ} \mathrm{C} \& 1 \& Must include units for the award of the mark.

\hline Q1b \& 6^{\circ} \mathrm{C} \& 1 \& Must include units for the award of the mark.

Q2 part a) is incorrect, also accept the answer\end{array}\right]\)| Accept any explanation that includes an example pair |
| :--- |
| of numbers for which this would be true. |
| For example ACCEPT: |
| 53 to the nearest hundred is 100, and to the nearest +8. |
| ten is 50 and $2 \times 50=100$. |
| If it's 50 or more but less than 55 it will round to 100
 (nearest hundred) and 50 (nearest ten) and 100 is
 double 50.
 51 rounds to 50 and 100. |
| Q3 |

Q1 This table shows the height of the four tallest mountains in Europe.

Mountain name	Height in feet
Mount Elbrus	18,510
Mount Shkhara	17,064
Mont Blanc	15,774
Monte Rosa	15,203

How much higher are Mount Elbrus and Mount Shkhara combined than Mount Blanc and Mount Rosa combined?

Q2 Complete this table.

Number	Rounded to the nearest thousand
5,843	
874,732	
699,847	
$43,743,743$	

Q3 Draw lines to match the equivalent proportions.

$\frac{1}{2}$	25%
$\frac{1}{4}$	0.5
$\frac{1}{5}$	80%
$\frac{2}{5}$	20%
$\frac{4}{5}$	0.4

Q1 This table shows the height of the four tallest mountains in Europe.

Mountain name	Height in feet
Mount Elbrus	18,510
Mount Shkhara	17,064
Mont Blanc	15,774
Monte Rosa	15,203

How much higher are Mount Elbrus and Mount Shkhara combined than Mount Blanc and Mount Rosa combined?

Q2 Complete this table.

Number	Rounded to the nearest thousand
5,843	6,000
874,732	$\mathbf{8 7 5 , 0 0 0}$
699,847	$\mathbf{7 0 0 , 0 0 0}$
$43,743,743$	$\mathbf{4 3 , 7 4 4 , 0 0 0}$

Q3 Draw lines to match the equivalent proportions.

	Requirement		Mark	Additional guidance
Q1	Award TWO marks for the correct answer of 4,597. Award ONE mark for correct and complete working, which includes no more than two arithmetic errors. Working must include $18,510+17,064,15,774+15,203$ and then finding the difference between the two totals.		2	An answer must be arrived at (but does not need to be in the answer box) for the award of ONE mark.
Q2	Award TWO marks if all boxes completed correctly:		2	Commas not needed in answers for the award of marks.
	Number	Rounded to the nearest thousand		
	5,843	6,000		
	874,732	875,000		
	699,847	700,000		
	43,743,743	43,744,000		
	Award ONE mark for three correct answers.			
Q3	Award TWO marks for all correctly matched: Award ONE mark for three correctly matched.		2	Do NOT accept any double matching (i.e. do NOT accept $\frac{1}{4}$ and $\frac{1}{5}$ both joined to 20%).

Q1 Vicky writes down three numbers:
506,606 650,660 566,600
Write down two things that are the same about these numbers and two things that are different.

Same:
\qquad
\qquad
\qquad
Different:
\qquad
\qquad
\qquad

Q2 The difference between two whole numbers is four.

When each number is rounded to the nearest hundred, the difference between them is 100.

Write two possible values for the sets of numbers.

2 marks
Q3 Marley says " $\frac{3}{4}$ and $\frac{21}{28}$ are equivalent."
Explain why Marley is correct.

Q1 Vicky writes down three numbers:
506,606 650,660 566,600
Write down two things that are the same about these numbers and two things that are different.

Same:

All numbers have six digits.

Q2 The difference between two whole numbers is four.

When each number is rounded to the nearest hundred, the difference between them is 100.

Write two possible values for the sets of numbers.

2 marks
Q3 Marley says " $\frac{3}{4}$ and $\frac{21}{28}$ are equivalent."
Explain why Marley is correct.

	Requirement	Mark	Additional guidance
Q1	Accept any reasonable, accurate response. Most responses will refer to place value. Examples of correct responses are shown below: Same: All numbers have six digits. All numbers have a 6 in the hundreds place (worth $600)$. All the numbers are bigger than 500,000. All the numbers use the same digits. Different: The place value of the digits is different. The value of each number is different. Any place value-related observation e.g. 506,606 has a six in the ones column (worth 6) but the other two numbers don't.	1	When answering this question as a class, why not see how many different 'same' and 'different' facts you can come up with?

	Requirement	Mark	Additional guidance
Q2	Award TWO marks for any two pairs of correct numbers from the list below. Award ONE mark for one pair of correct numbers, plus either no other pair given or one incorrect pair.	2	Accept duplication of the same pair for ONE mark.
Q3	Award ONE mark for an explanation that explains that they are equivalent as the numerator and denominator are linked by the same scale factor AND that identifies the scale factor. $\text { e.g. } 3 \times 7=21 \quad 4 \times 7=28$ You can multiply 3 and 4 by 7 to get to $\frac{21}{28}$.	1	Do NOT accept vague answers or answers which do not identify the scale factor.

What are examiners looking for?

Q2 The difference between two whole numbers is four.

When each number is rounded to the nearest hundred, the difference between them is 100 .

Write two possible values for the sets of numbers.

48	and	52
46	and	50

Why are we asking this question?

This question assesses children's true understanding of rounding numbers.

What common errors do we expect to see?

Children consider that the problem is impossible to solve.
This indicates that children do not have a secure understanding of rounding, and the impact that this has on the numbers that are being rounded. Children may not understand that numbers that are above 50 would be rounded up, whereas numbers below 50 would be rounded down.

Children record 100 and 200 (or two other rounded numbers) as their answers. This indicates that children have not carefully read the problem and have instead focused solely on the information in the shaded lozenge. Whilst the lozenge provides the key instruction, it should always be read in conjunction with information that has been provided elsewhere in the problem.

How to encourage children to solve this question

First, encourage children to consider the rules they know for rounding, and specifically how these apply to rounding numbers to the nearest 100 . Children should recall that they need to look at the place value that is one smaller than the number being rounded to (i.e. look at the tens if we are rounding to the nearest hundred) to consider if the number is rounded up or down. They should also recall that when rounding to the nearest hundred, if the value of the tens place is 50 or more they round up, where if it is less than 50 they round the number down.

This should allow the children to begin to 'zone in' on the solution to the problem, and that the problem must rely on one number being rounded down, whilst the other is rounded up. Children should then be encouraged to begin to find solutions through trial and improvement, for example, starting with one number being 150 and the other is therefore 146 and so on.

THIRD SPACE
 LEARNING

Specialist 1-to-1 maths interventions
and curriculum resources

Rapid Reasoning

Do you have a group of pupils who need a boost in maths this term?

Each pupil could receive a personalised lesson every week from our specialist 1-to-1 maths tutors.

- Raise attainment
- Plug any gaps or misconceptions
- Boost confidence

Speak to us:

thirdspacelearning.com02037710095
hello@thirdspacelearning.com

THIRD SPACE LEARNING

